BioASQ Participants Area
Task 10b: Test Results of Phase A
* The "-" replace the scores of systems that didn't submit the corresponding annotations. *
The test results are presented in separate tables for each type of annotation. They are sorted based on the scores of MAP. The "System Description" of each system is used.
The evaluation measures that are used are presented
here .
Test batch 1
Documents
System |
Mean precision |
Recall |
F-Measure |
MAP |
GMAP |
The basic end-to-end |
0.2496 |
0.5135 |
0.2787 |
0.4278 |
0.0272 |
AUEB-System1 |
0.1678 |
0.4092 |
0.1899 |
0.3394 |
0.0073 |
Fleming-1 |
0.0878 |
0.1590 |
0.0866 |
0.1285 |
0.0003 |
bio-answerfinder |
0.3908 |
0.4170 |
0.3553 |
0.4129 |
0.0138 |
gsl_zs_hybrid |
0.2222 |
0.5514 |
0.2482 |
0.4633 |
0.0571 |
bio-answerfinder-2 |
0.2613 |
0.4715 |
0.2578 |
0.4123 |
0.0293 |
gsl_zs_rrf1 |
0.2311 |
0.5658 |
0.2584 |
0.4779 |
0.0590 |
gsl_zs_rrf2 |
0.2289 |
0.5529 |
0.2550 |
0.4759 |
0.0533 |
gsl_zs_nn |
0.2067 |
0.5269 |
0.2314 |
0.4570 |
0.0465 |
gsl_zs_rrf3 |
0.2200 |
0.5167 |
0.2449 |
0.4325 |
0.0382 |
Basic e2e mid speed |
0.2396 |
0.4960 |
0.2668 |
0.4165 |
0.0249 |
RYGH-1 |
0.2889 |
0.6122 |
0.2999 |
0.5624 |
0.0992 |
RYGH |
0.2730 |
0.5980 |
0.2911 |
0.5365 |
0.0980 |
RYGH-3 |
0.2765 |
0.6162 |
0.2937 |
0.5538 |
0.1267 |
RYGH-4 |
0.2774 |
0.6177 |
0.2943 |
0.5620 |
0.1286 |
AUEB-System2 |
0.2100 |
0.4634 |
0.2280 |
0.4035 |
0.0137 |
simple baseline solr |
0.0022 |
0.0015 |
0.0018 |
0.0008 |
0.0000 |
bioinfo-0 |
0.2289 |
0.5574 |
0.2532 |
0.4616 |
0.0764 |
bioinfo-1 |
0.2311 |
0.5569 |
0.2539 |
0.4673 |
0.0694 |
bioinfo-2 |
0.2256 |
0.5550 |
0.2504 |
0.4577 |
0.0743 |
bioinfo-3 |
0.2289 |
0.5529 |
0.2508 |
0.4627 |
0.0709 |
Fleming-2 |
0.0878 |
0.1596 |
0.0862 |
0.1253 |
0.0003 |
Fleming-3 |
0.0878 |
0.1596 |
0.0862 |
0.1253 |
0.0003 |
Snippets
System |
Mean precision |
Recall |
F-Measure |
MAP |
GMAP |
The basic end-to-end |
0.1289 |
0.0009 |
0.0017 |
0.2069 |
0.0016 |
AUEB-System1 |
0.1534 |
0.2283 |
0.1475 |
0.3116 |
0.0037 |
Fleming-1 |
- |
- |
- |
- |
- |
bio-answerfinder |
0.2144 |
0.2774 |
0.1914 |
0.5818 |
0.0074 |
gsl_zs_hybrid |
- |
- |
- |
- |
- |
bio-answerfinder-2 |
0.2075 |
0.2390 |
0.1719 |
0.3365 |
0.0096 |
gsl_zs_rrf1 |
- |
- |
- |
- |
- |
gsl_zs_rrf2 |
- |
- |
- |
- |
- |
gsl_zs_nn |
- |
- |
- |
- |
- |
gsl_zs_rrf3 |
- |
- |
- |
- |
- |
Basic e2e mid speed |
0.1266 |
0.0009 |
0.0017 |
0.2057 |
0.0016 |
RYGH-1 |
0.3211 |
0.4301 |
0.2886 |
0.5925 |
0.0636 |
RYGH |
0.2949 |
0.4282 |
0.2762 |
0.5752 |
0.0925 |
RYGH-3 |
0.3075 |
0.4639 |
0.2890 |
0.6043 |
0.1236 |
RYGH-4 |
0.3068 |
0.4576 |
0.2865 |
0.5947 |
0.1220 |
AUEB-System2 |
0.1773 |
0.2687 |
0.1658 |
0.3569 |
0.0079 |
simple baseline solr |
- |
- |
- |
- |
- |
bioinfo-0 |
- |
- |
- |
- |
- |
bioinfo-1 |
- |
- |
- |
- |
- |
bioinfo-2 |
- |
- |
- |
- |
- |
bioinfo-3 |
- |
- |
- |
- |
- |
Fleming-2 |
- |
- |
- |
- |
- |
Fleming-3 |
- |
- |
- |
- |
- |
Concepts
System |
Mean precision |
Recall |
F-Measure |
MAP |
GMAP |
The basic end-to-end |
- |
- |
- |
- |
- |
AUEB-System1 |
- |
- |
- |
- |
- |
Fleming-1 |
- |
- |
- |
- |
- |
bio-answerfinder |
- |
- |
- |
- |
- |
gsl_zs_hybrid |
- |
- |
- |
- |
- |
bio-answerfinder-2 |
- |
- |
- |
- |
- |
gsl_zs_rrf1 |
- |
- |
- |
- |
- |
gsl_zs_rrf2 |
- |
- |
- |
- |
- |
gsl_zs_nn |
- |
- |
- |
- |
- |
gsl_zs_rrf3 |
- |
- |
- |
- |
- |
Basic e2e mid speed |
- |
- |
- |
- |
- |
RYGH-1 |
- |
- |
- |
- |
- |
RYGH |
- |
- |
- |
- |
- |
RYGH-3 |
- |
- |
- |
- |
- |
RYGH-4 |
- |
- |
- |
- |
- |
AUEB-System2 |
- |
- |
- |
- |
- |
simple baseline solr |
- |
- |
- |
- |
- |
bioinfo-0 |
- |
- |
- |
- |
- |
bioinfo-1 |
- |
- |
- |
- |
- |
bioinfo-2 |
- |
- |
- |
- |
- |
bioinfo-3 |
- |
- |
- |
- |
- |
Fleming-2 |
- |
- |
- |
- |
- |
Fleming-3 |
- |
- |
- |
- |
- |
RDF Triples
System |
Mean precision |
Recall |
F-Measure |
MAP |
GMAP |
The basic end-to-end |
- |
- |
- |
- |
- |
AUEB-System1 |
- |
- |
- |
- |
- |
Fleming-1 |
- |
- |
- |
- |
- |
bio-answerfinder |
- |
- |
- |
- |
- |
gsl_zs_hybrid |
- |
- |
- |
- |
- |
bio-answerfinder-2 |
- |
- |
- |
- |
- |
gsl_zs_rrf1 |
- |
- |
- |
- |
- |
gsl_zs_rrf2 |
- |
- |
- |
- |
- |
gsl_zs_nn |
- |
- |
- |
- |
- |
gsl_zs_rrf3 |
- |
- |
- |
- |
- |
Basic e2e mid speed |
- |
- |
- |
- |
- |
RYGH-1 |
- |
- |
- |
- |
- |
RYGH |
- |
- |
- |
- |
- |
RYGH-3 |
- |
- |
- |
- |
- |
RYGH-4 |
- |
- |
- |
- |
- |
AUEB-System2 |
- |
- |
- |
- |
- |
simple baseline solr |
- |
- |
- |
- |
- |
bioinfo-0 |
- |
- |
- |
- |
- |
bioinfo-1 |
- |
- |
- |
- |
- |
bioinfo-2 |
- |
- |
- |
- |
- |
bioinfo-3 |
- |
- |
- |
- |
- |
Fleming-2 |
- |
- |
- |
- |
- |
Fleming-3 |
- |
- |
- |
- |
- |
Test batch 2
Documents
System |
Mean precision |
Recall |
F-Measure |
MAP |
GMAP |
simple baseline solr |
0.0867 |
0.2436 |
0.0941 |
0.1743 |
0.0005 |
bio-answerfinder |
0.3458 |
0.4061 |
0.3094 |
0.4004 |
0.0107 |
bio-answerfinder-2 |
0.2811 |
0.4112 |
0.2573 |
0.4056 |
0.0131 |
bio-answerfinder-3 |
0.2924 |
0.3090 |
0.2450 |
0.3153 |
0.0035 |
bio-answerfinder-4 |
0.2753 |
0.3968 |
0.2498 |
0.3992 |
0.0115 |
Fleming-1 |
0.0833 |
0.2474 |
0.0924 |
0.1793 |
0.0007 |
AUEB-System1 |
0.1378 |
0.3451 |
0.1433 |
0.2712 |
0.0058 |
AUEB-System2 |
0.2067 |
0.4715 |
0.2060 |
0.4068 |
0.0259 |
The basic end-to-end |
0.1848 |
0.4408 |
0.2032 |
0.3419 |
0.0095 |
Basic e2e mid speed |
0.1859 |
0.4435 |
0.2046 |
0.3424 |
0.0112 |
bioinfo-0 |
0.2067 |
0.4658 |
0.2128 |
0.3885 |
0.0261 |
bioinfo-1 |
0.2056 |
0.4650 |
0.2120 |
0.3966 |
0.0262 |
gsl_zs_rrf1 |
0.2244 |
0.5116 |
0.2310 |
0.4554 |
0.0402 |
gsl_zs_hybrid |
0.2233 |
0.5176 |
0.2299 |
0.4681 |
0.0415 |
gsl_zs_nn |
0.2056 |
0.5032 |
0.2162 |
0.4302 |
0.0342 |
gsl_zs_rrf3 |
0.2167 |
0.4866 |
0.2197 |
0.4667 |
0.0310 |
gsl_zs_rrf2 |
0.2144 |
0.5092 |
0.2228 |
0.4641 |
0.0340 |
RYGH-5 |
0.2300 |
0.4824 |
0.2274 |
0.4730 |
0.0316 |
RYGH-1 |
0.2758 |
0.5809 |
0.2736 |
0.5269 |
0.0604 |
RYGH-3 |
0.2859 |
0.5722 |
0.2805 |
0.5371 |
0.0558 |
RYGH |
0.2825 |
0.5632 |
0.2743 |
0.5230 |
0.0528 |
RYGH-4 |
0.2868 |
0.5686 |
0.2792 |
0.5347 |
0.0501 |
Fleming-2 |
0.0733 |
0.2143 |
0.0810 |
0.1721 |
0.0005 |
Fleming-3 |
0.0667 |
0.1853 |
0.0725 |
0.1289 |
0.0003 |
bioinfo-2 |
0.2067 |
0.4667 |
0.2128 |
0.4084 |
0.0253 |
bioinfo-3 |
0.2067 |
0.4767 |
0.2135 |
0.3957 |
0.0272 |
bioinfo-4 |
0.1789 |
0.4086 |
0.1849 |
0.3323 |
0.0123 |
Deep ML methods for |
0.1722 |
0.4343 |
0.1801 |
0.3477 |
0.0182 |
MindLab QA System |
0.1722 |
0.4343 |
0.1801 |
0.3477 |
0.0182 |
Fleming-4 |
0.0778 |
0.2206 |
0.0838 |
0.1444 |
0.0005 |
MindLab Red Lions++ |
0.1722 |
0.4343 |
0.1801 |
0.3477 |
0.0182 |
Snippets
System |
Mean precision |
Recall |
F-Measure |
MAP |
GMAP |
simple baseline solr |
- |
- |
- |
- |
- |
bio-answerfinder |
0.2303 |
0.2545 |
0.1818 |
0.4856 |
0.0053 |
bio-answerfinder-2 |
0.2346 |
0.2689 |
0.1835 |
0.4238 |
0.0078 |
bio-answerfinder-3 |
0.2137 |
0.2153 |
0.1622 |
0.4166 |
0.0026 |
bio-answerfinder-4 |
0.2289 |
0.2500 |
0.1759 |
0.4125 |
0.0062 |
Fleming-1 |
- |
- |
- |
- |
- |
AUEB-System1 |
0.1259 |
0.1528 |
0.1033 |
0.2510 |
0.0017 |
AUEB-System2 |
0.1722 |
0.2088 |
0.1316 |
0.3194 |
0.0057 |
The basic end-to-end |
0.1044 |
0.0005 |
0.0011 |
0.1328 |
0.0004 |
Basic e2e mid speed |
0.1053 |
0.0006 |
0.0011 |
0.1315 |
0.0005 |
bioinfo-0 |
- |
- |
- |
- |
- |
bioinfo-1 |
- |
- |
- |
- |
- |
gsl_zs_rrf1 |
- |
- |
- |
- |
- |
gsl_zs_hybrid |
- |
- |
- |
- |
- |
gsl_zs_nn |
- |
- |
- |
- |
- |
gsl_zs_rrf3 |
- |
- |
- |
- |
- |
gsl_zs_rrf2 |
- |
- |
- |
- |
- |
RYGH-5 |
0.2268 |
0.3407 |
0.2072 |
0.7596 |
0.0232 |
RYGH-1 |
0.2866 |
0.3800 |
0.2487 |
0.6042 |
0.0273 |
RYGH-3 |
0.2905 |
0.3723 |
0.2487 |
0.5894 |
0.0251 |
RYGH |
0.2932 |
0.3782 |
0.2525 |
0.6104 |
0.0255 |
RYGH-4 |
0.2880 |
0.3707 |
0.2480 |
0.5929 |
0.0235 |
Fleming-2 |
- |
- |
- |
- |
- |
Fleming-3 |
- |
- |
- |
- |
- |
bioinfo-2 |
- |
- |
- |
- |
- |
bioinfo-3 |
- |
- |
- |
- |
- |
bioinfo-4 |
- |
- |
- |
- |
- |
Deep ML methods for |
0.1194 |
0.1794 |
0.1095 |
0.3635 |
0.0013 |
MindLab QA System |
0.1194 |
0.1794 |
0.1095 |
0.3635 |
0.0013 |
Fleming-4 |
- |
- |
- |
- |
- |
MindLab Red Lions++ |
0.1194 |
0.1794 |
0.1095 |
0.3635 |
0.0013 |
Concepts
System |
Mean precision |
Recall |
F-Measure |
MAP |
GMAP |
simple baseline solr |
- |
- |
- |
- |
- |
bio-answerfinder |
- |
- |
- |
- |
- |
bio-answerfinder-2 |
- |
- |
- |
- |
- |
bio-answerfinder-3 |
- |
- |
- |
- |
- |
bio-answerfinder-4 |
- |
- |
- |
- |
- |
Fleming-1 |
- |
- |
- |
- |
- |
AUEB-System1 |
- |
- |
- |
- |
- |
AUEB-System2 |
- |
- |
- |
- |
- |
The basic end-to-end |
- |
- |
- |
- |
- |
Basic e2e mid speed |
- |
- |
- |
- |
- |
bioinfo-0 |
- |
- |
- |
- |
- |
bioinfo-1 |
- |
- |
- |
- |
- |
gsl_zs_rrf1 |
- |
- |
- |
- |
- |
gsl_zs_hybrid |
- |
- |
- |
- |
- |
gsl_zs_nn |
- |
- |
- |
- |
- |
gsl_zs_rrf3 |
- |
- |
- |
- |
- |
gsl_zs_rrf2 |
- |
- |
- |
- |
- |
RYGH-5 |
- |
- |
- |
- |
- |
RYGH-1 |
- |
- |
- |
- |
- |
RYGH-3 |
- |
- |
- |
- |
- |
RYGH |
- |
- |
- |
- |
- |
RYGH-4 |
- |
- |
- |
- |
- |
Fleming-2 |
- |
- |
- |
- |
- |
Fleming-3 |
- |
- |
- |
- |
- |
bioinfo-2 |
- |
- |
- |
- |
- |
bioinfo-3 |
- |
- |
- |
- |
- |
bioinfo-4 |
- |
- |
- |
- |
- |
Deep ML methods for |
- |
- |
- |
- |
- |
MindLab QA System |
- |
- |
- |
- |
- |
Fleming-4 |
- |
- |
- |
- |
- |
MindLab Red Lions++ |
- |
- |
- |
- |
- |
RDF Triples
System |
Mean precision |
Recall |
F-Measure |
MAP |
GMAP |
simple baseline solr |
- |
- |
- |
- |
- |
bio-answerfinder |
- |
- |
- |
- |
- |
bio-answerfinder-2 |
- |
- |
- |
- |
- |
bio-answerfinder-3 |
- |
- |
- |
- |
- |
bio-answerfinder-4 |
- |
- |
- |
- |
- |
Fleming-1 |
- |
- |
- |
- |
- |
AUEB-System1 |
- |
- |
- |
- |
- |
AUEB-System2 |
- |
- |
- |
- |
- |
The basic end-to-end |
- |
- |
- |
- |
- |
Basic e2e mid speed |
- |
- |
- |
- |
- |
bioinfo-0 |
- |
- |
- |
- |
- |
bioinfo-1 |
- |
- |
- |
- |
- |
gsl_zs_rrf1 |
- |
- |
- |
- |
- |
gsl_zs_hybrid |
- |
- |
- |
- |
- |
gsl_zs_nn |
- |
- |
- |
- |
- |
gsl_zs_rrf3 |
- |
- |
- |
- |
- |
gsl_zs_rrf2 |
- |
- |
- |
- |
- |
RYGH-5 |
- |
- |
- |
- |
- |
RYGH-1 |
- |
- |
- |
- |
- |
RYGH-3 |
- |
- |
- |
- |
- |
RYGH |
- |
- |
- |
- |
- |
RYGH-4 |
- |
- |
- |
- |
- |
Fleming-2 |
- |
- |
- |
- |
- |
Fleming-3 |
- |
- |
- |
- |
- |
bioinfo-2 |
- |
- |
- |
- |
- |
bioinfo-3 |
- |
- |
- |
- |
- |
bioinfo-4 |
- |
- |
- |
- |
- |
Deep ML methods for |
- |
- |
- |
- |
- |
MindLab QA System |
- |
- |
- |
- |
- |
Fleming-4 |
- |
- |
- |
- |
- |
MindLab Red Lions++ |
- |
- |
- |
- |
- |
Test batch 3
Documents
System |
Mean precision |
Recall |
F-Measure |
MAP |
GMAP |
Basic e2e mid speed |
0.3047 |
0.5131 |
0.3075 |
0.4394 |
0.0308 |
bio-answerfinder |
0.3767 |
0.4826 |
0.3463 |
0.4306 |
0.0256 |
bio-answerfinder-2 |
0.2718 |
0.4898 |
0.2705 |
0.4335 |
0.0235 |
Fleming-1 |
0.0944 |
0.3592 |
0.1238 |
0.2581 |
0.0030 |
Fleming-2 |
0.0767 |
0.3097 |
0.1004 |
0.2192 |
0.0012 |
AUEB-System1 |
0.1556 |
0.4556 |
0.1779 |
0.3475 |
0.0139 |
AUEB-System2 |
0.2000 |
0.5252 |
0.2183 |
0.4690 |
0.0483 |
bio-answerfinder-3 |
0.3378 |
0.4317 |
0.3073 |
0.4053 |
0.0143 |
bio-answerfinder-4 |
0.2742 |
0.5017 |
0.2742 |
0.4437 |
0.0272 |
Deep ML methods for |
0.1356 |
0.3704 |
0.1508 |
0.2528 |
0.0062 |
gsl_zs_hybrid |
0.2244 |
0.5808 |
0.2493 |
0.5166 |
0.0740 |
gsl_zs_rrf1 |
0.2233 |
0.5858 |
0.2499 |
0.5178 |
0.0738 |
gsl_zs_nn |
0.2011 |
0.5292 |
0.2249 |
0.4853 |
0.0319 |
gsl_zs_rrf3 |
0.2056 |
0.5430 |
0.2295 |
0.4912 |
0.0396 |
gsl_zs_rrf2 |
0.1778 |
0.5066 |
0.2047 |
0.4424 |
0.0266 |
RYGH-1 |
0.2626 |
0.6345 |
0.2833 |
0.5787 |
0.0995 |
RYGH |
0.2625 |
0.6468 |
0.2860 |
0.5935 |
0.0856 |
RYGH-3 |
0.2623 |
0.6356 |
0.2840 |
0.5949 |
0.0943 |
RYGH-4 |
0.2598 |
0.6458 |
0.2837 |
0.5930 |
0.1026 |
RYGH-5 |
0.2567 |
0.6574 |
0.2861 |
0.5994 |
0.1154 |
bioinfo-0 |
0.2189 |
0.6284 |
0.2538 |
0.4973 |
0.0768 |
bioinfo-1 |
0.2200 |
0.6294 |
0.2547 |
0.4926 |
0.0705 |
bioinfo-2 |
0.2200 |
0.6294 |
0.2547 |
0.4926 |
0.0705 |
bioinfo-3 |
0.2178 |
0.6063 |
0.2502 |
0.4803 |
0.0602 |
bioinfo-4 |
0.2189 |
0.6293 |
0.2543 |
0.4895 |
0.0694 |
Fleming-3 |
0.1322 |
0.4667 |
0.1733 |
0.3470 |
0.0114 |
Fleming-4 |
0.1122 |
0.4140 |
0.1471 |
0.3049 |
0.0046 |
The basic end-to-end |
0.3093 |
0.5148 |
0.3102 |
0.4450 |
0.0311 |
BioNIR Prepro-mid |
0.3070 |
0.5070 |
0.3081 |
0.4223 |
0.0297 |
Snippets
System |
Mean precision |
Recall |
F-Measure |
MAP |
GMAP |
Basic e2e mid speed |
0.2228 |
0.3395 |
0.2036 |
0.5274 |
0.0152 |
bio-answerfinder |
0.2272 |
0.3480 |
0.2162 |
0.6097 |
0.0168 |
bio-answerfinder-2 |
0.2152 |
0.3059 |
0.1975 |
0.4151 |
0.0122 |
Fleming-1 |
- |
- |
- |
- |
- |
Fleming-2 |
- |
- |
- |
- |
- |
AUEB-System1 |
0.1468 |
0.2471 |
0.1398 |
0.3717 |
0.0092 |
AUEB-System2 |
0.1701 |
0.2928 |
0.1590 |
0.4350 |
0.0219 |
bio-answerfinder-3 |
0.2174 |
0.3123 |
0.2050 |
0.5274 |
0.0116 |
bio-answerfinder-4 |
0.2179 |
0.3174 |
0.1996 |
0.4236 |
0.0141 |
Deep ML methods for |
0.0495 |
0.1103 |
0.0518 |
0.1129 |
0.0003 |
gsl_zs_hybrid |
- |
- |
- |
- |
- |
gsl_zs_rrf1 |
- |
- |
- |
- |
- |
gsl_zs_nn |
- |
- |
- |
- |
- |
gsl_zs_rrf3 |
- |
- |
- |
- |
- |
gsl_zs_rrf2 |
- |
- |
- |
- |
- |
RYGH-1 |
0.2735 |
0.4700 |
0.2725 |
0.6288 |
0.0630 |
RYGH |
0.2596 |
0.4831 |
0.2649 |
0.6242 |
0.0630 |
RYGH-3 |
0.2701 |
0.4661 |
0.2683 |
0.6111 |
0.0570 |
RYGH-4 |
0.2657 |
0.4758 |
0.2673 |
0.6148 |
0.0616 |
RYGH-5 |
0.2703 |
0.4932 |
0.2839 |
0.9386 |
0.0762 |
bioinfo-0 |
- |
- |
- |
- |
- |
bioinfo-1 |
- |
- |
- |
- |
- |
bioinfo-2 |
- |
- |
- |
- |
- |
bioinfo-3 |
- |
- |
- |
- |
- |
bioinfo-4 |
- |
- |
- |
- |
- |
Fleming-3 |
- |
- |
- |
- |
- |
Fleming-4 |
- |
- |
- |
- |
- |
The basic end-to-end |
0.2271 |
0.3417 |
0.2065 |
0.5329 |
0.0152 |
BioNIR Prepro-mid |
0.2162 |
0.3263 |
0.1980 |
0.4977 |
0.0139 |
Concepts
System |
Mean precision |
Recall |
F-Measure |
MAP |
GMAP |
Basic e2e mid speed |
- |
- |
- |
- |
- |
bio-answerfinder |
- |
- |
- |
- |
- |
bio-answerfinder-2 |
- |
- |
- |
- |
- |
Fleming-1 |
- |
- |
- |
- |
- |
Fleming-2 |
- |
- |
- |
- |
- |
AUEB-System1 |
- |
- |
- |
- |
- |
AUEB-System2 |
- |
- |
- |
- |
- |
bio-answerfinder-3 |
- |
- |
- |
- |
- |
bio-answerfinder-4 |
- |
- |
- |
- |
- |
Deep ML methods for |
- |
- |
- |
- |
- |
gsl_zs_hybrid |
- |
- |
- |
- |
- |
gsl_zs_rrf1 |
- |
- |
- |
- |
- |
gsl_zs_nn |
- |
- |
- |
- |
- |
gsl_zs_rrf3 |
- |
- |
- |
- |
- |
gsl_zs_rrf2 |
- |
- |
- |
- |
- |
RYGH-1 |
- |
- |
- |
- |
- |
RYGH |
- |
- |
- |
- |
- |
RYGH-3 |
- |
- |
- |
- |
- |
RYGH-4 |
- |
- |
- |
- |
- |
RYGH-5 |
- |
- |
- |
- |
- |
bioinfo-0 |
- |
- |
- |
- |
- |
bioinfo-1 |
- |
- |
- |
- |
- |
bioinfo-2 |
- |
- |
- |
- |
- |
bioinfo-3 |
- |
- |
- |
- |
- |
bioinfo-4 |
- |
- |
- |
- |
- |
Fleming-3 |
- |
- |
- |
- |
- |
Fleming-4 |
- |
- |
- |
- |
- |
The basic end-to-end |
- |
- |
- |
- |
- |
BioNIR Prepro-mid |
- |
- |
- |
- |
- |
RDF Triples
System |
Mean precision |
Recall |
F-Measure |
MAP |
GMAP |
Basic e2e mid speed |
- |
- |
- |
- |
- |
bio-answerfinder |
- |
- |
- |
- |
- |
bio-answerfinder-2 |
- |
- |
- |
- |
- |
Fleming-1 |
- |
- |
- |
- |
- |
Fleming-2 |
- |
- |
- |
- |
- |
AUEB-System1 |
- |
- |
- |
- |
- |
AUEB-System2 |
- |
- |
- |
- |
- |
bio-answerfinder-3 |
- |
- |
- |
- |
- |
bio-answerfinder-4 |
- |
- |
- |
- |
- |
Deep ML methods for |
- |
- |
- |
- |
- |
gsl_zs_hybrid |
- |
- |
- |
- |
- |
gsl_zs_rrf1 |
- |
- |
- |
- |
- |
gsl_zs_nn |
- |
- |
- |
- |
- |
gsl_zs_rrf3 |
- |
- |
- |
- |
- |
gsl_zs_rrf2 |
- |
- |
- |
- |
- |
RYGH-1 |
- |
- |
- |
- |
- |
RYGH |
- |
- |
- |
- |
- |
RYGH-3 |
- |
- |
- |
- |
- |
RYGH-4 |
- |
- |
- |
- |
- |
RYGH-5 |
- |
- |
- |
- |
- |
bioinfo-0 |
- |
- |
- |
- |
- |
bioinfo-1 |
- |
- |
- |
- |
- |
bioinfo-2 |
- |
- |
- |
- |
- |
bioinfo-3 |
- |
- |
- |
- |
- |
bioinfo-4 |
- |
- |
- |
- |
- |
Fleming-3 |
- |
- |
- |
- |
- |
Fleming-4 |
- |
- |
- |
- |
- |
The basic end-to-end |
- |
- |
- |
- |
- |
BioNIR Prepro-mid |
- |
- |
- |
- |
- |
Test batch 4
Documents
System |
Mean precision |
Recall |
F-Measure |
MAP |
GMAP |
AUEB-System1 |
0.1500 |
0.4069 |
0.1717 |
0.3073 |
0.0076 |
AUEB-System2 |
0.1967 |
0.4411 |
0.2106 |
0.3868 |
0.0145 |
bio-answerfinder |
0.3917 |
0.4389 |
0.3358 |
0.3837 |
0.0273 |
bio-answerfinder-2 |
0.2879 |
0.4828 |
0.2838 |
0.4014 |
0.0382 |
Basic e2e mid speed |
0.3017 |
0.4505 |
0.2873 |
0.3706 |
0.0180 |
bio-answerfinder-3 |
0.3196 |
0.3955 |
0.2784 |
0.3561 |
0.0111 |
bio-answerfinder-4 |
0.2905 |
0.4971 |
0.2879 |
0.4067 |
0.0427 |
LaRSA |
0.2773 |
0.5174 |
0.2730 |
0.4357 |
0.0483 |
The basic end-to-end |
0.2954 |
0.4306 |
0.2788 |
0.3586 |
0.0139 |
Fleming-3 |
0.2000 |
0.5000 |
0.2224 |
0.3769 |
0.0297 |
gsl_zs_hybrid |
0.2344 |
0.5496 |
0.2539 |
0.4881 |
0.0561 |
gsl_zs_rrf1 |
0.2378 |
0.5492 |
0.2553 |
0.4836 |
0.0566 |
gsl_zs_rrf2 |
0.2411 |
0.5547 |
0.2590 |
0.4927 |
0.0573 |
gsl_zs_nn |
0.2044 |
0.5030 |
0.2230 |
0.4489 |
0.0491 |
gsl_zs_rrf3 |
0.2378 |
0.5534 |
0.2564 |
0.4791 |
0.0613 |
Deep ML methods for |
0.1167 |
0.2429 |
0.1223 |
0.1695 |
0.0012 |
MindLab QA System |
0.1167 |
0.2429 |
0.1223 |
0.1695 |
0.0012 |
RYGH-1 |
0.2699 |
0.6056 |
0.2839 |
0.5265 |
0.1053 |
RYGH |
0.2715 |
0.5942 |
0.2829 |
0.5169 |
0.0833 |
RYGH-4 |
0.2722 |
0.5994 |
0.2858 |
0.5211 |
0.0969 |
RYGH-5 |
0.2678 |
0.5973 |
0.2823 |
0.5161 |
0.0966 |
bioinfo-0 |
0.2300 |
0.5318 |
0.2480 |
0.4486 |
0.0427 |
bioinfo-1 |
0.2322 |
0.5269 |
0.2505 |
0.4568 |
0.0431 |
bioinfo-2 |
0.2411 |
0.5207 |
0.2552 |
0.4630 |
0.0392 |
bioinfo-3 |
0.2533 |
0.5518 |
0.2701 |
0.4648 |
0.0491 |
bioinfo-4 |
0.2300 |
0.5251 |
0.2483 |
0.4526 |
0.0459 |
RYGH-3 |
0.2721 |
0.6061 |
0.2850 |
0.5284 |
0.1056 |
Snippets
System |
Mean precision |
Recall |
F-Measure |
MAP |
GMAP |