BioASQ Participants Area
Task 7b: Test Results of Phase A
* The "-" replace the scores of systems that didn't submit the corresponding annotations. *The test results are presented in separate tables for each type of annotation. They are sorted based on the scores of MAP. The "System Description" of each system is used.
The evaluation measures that are used are presented here .
Test batch 1
Documents
| System | Mean precision | Recall | F-Measure | MAP | GMAP |
|---|---|---|---|---|---|
| auth-qa-1 | 0.2100 | 0.2357 | 0.1845 | 0.0705 | 0.0003 |
| lh_sys1 | 0.1910 | 0.5281 | 0.2237 | 0.1401 | 0.0078 |
| Deep ML methods for | 0.1930 | 0.5339 | 0.2230 | 0.1569 | 0.0089 |
| Ir_sys1 | 0.1770 | 0.5096 | 0.2095 | 0.1231 | 0.0067 |
| Ir_sys2 | 0.1910 | 0.5443 | 0.2248 | 0.1388 | 0.0082 |
| Ir_sys3 | 0.1520 | 0.3906 | 0.1717 | 0.0899 | 0.0021 |
| Ir_sys4 | 0.1560 | 0.3949 | 0.1752 | 0.0926 | 0.0021 |
| lh_sys2 | 0.1720 | 0.4534 | 0.1971 | 0.1300 | 0.0039 |
| lh_sys3 | 0.1770 | 0.4843 | 0.2053 | 0.1224 | 0.0048 |
| lh_sys4 | 0.1910 | 0.5281 | 0.2237 | 0.1425 | 0.0075 |
| lh_sys5 | 0.1950 | 0.5420 | 0.2288 | 0.1434 | 0.0084 |
| lalala | 0.1914 | 0.2415 | 0.1894 | 0.0777 | 0.0003 |
Snippets
| System | Mean precision | Recall | F-Measure | MAP | GMAP |
|---|---|---|---|---|---|
| auth-qa-1 | - | - | - | - | - |
| lh_sys1 | - | - | - | - | - |
| Deep ML methods for | 0.1529 | 0.2933 | 0.1773 | 0.1411 | 0.0029 |
| Ir_sys1 | - | - | - | - | - |
| Ir_sys2 | - | - | - | - | - |
| Ir_sys3 | - | - | - | - | - |
| Ir_sys4 | - | - | - | - | - |
| lh_sys2 | - | - | - | - | - |
| lh_sys3 | - | - | - | - | - |
| lh_sys4 | - | - | - | - | - |
| lh_sys5 | - | - | - | - | - |
| lalala | - | - | - | - | - |
Concepts
| System | Mean precision | Recall | F-Measure | MAP | GMAP |
|---|---|---|---|---|---|
| auth-qa-1 | - | - | - | - | - |
| lh_sys1 | - | - | - | - | - |
| Deep ML methods for | - | - | - | - | - |
| Ir_sys1 | - | - | - | - | - |
| Ir_sys2 | - | - | - | - | - |
| Ir_sys3 | - | - | - | - | - |
| Ir_sys4 | - | - | - | - | - |
| lh_sys2 | - | - | - | - | - |
| lh_sys3 | - | - | - | - | - |
| lh_sys4 | - | - | - | - | - |
| lh_sys5 | - | - | - | - | - |
| lalala | - | - | - | - | - |
RDF Triples
| System | Mean precision | Recall | F-Measure | MAP | GMAP |
|---|---|---|---|---|---|
| auth-qa-1 | - | - | - | - | - |
| lh_sys1 | - | - | - | - | - |
| Deep ML methods for | - | - | - | - | - |
| Ir_sys1 | - | - | - | - | - |
| Ir_sys2 | - | - | - | - | - |
| Ir_sys3 | - | - | - | - | - |
| Ir_sys4 | - | - | - | - | - |
| lh_sys2 | - | - | - | - | - |
| lh_sys3 | - | - | - | - | - |
| lh_sys4 | - | - | - | - | - |
| lh_sys5 | - | - | - | - | - |
| lalala | - | - | - | - | - |
Test batch 2
Documents
| System | Mean precision | Recall | F-Measure | MAP | GMAP |
|---|---|---|---|---|---|
| from milab | 0.1010 | 0.2157 | 0.1060 | 0.0828 | 0.0005 |
| auth-qa-1 | 0.1913 | 0.2402 | 0.1760 | 0.0626 | 0.0005 |
| aueb-nlp-1 | 0.2440 | 0.6292 | 0.2770 | 0.2009 | 0.0219 |
| aueb-nlp-2 | 0.2480 | 0.6159 | 0.2791 | 0.2056 | 0.0203 |
| aueb-nlp-3 | 0.2470 | 0.6335 | 0.2805 | 0.2007 | 0.0221 |
| aueb-nlp-4 | 0.2570 | 0.6342 | 0.2888 | 0.2181 | 0.0209 |
| aueb-nlp-5 | 0.4368 | 0.5861 | 0.4307 | 0.2032 | 0.0145 |
| Deep ML methods for | 0.1990 | 0.5010 | 0.2227 | 0.1572 | 0.0066 |
| MindLab QA System ++ | 0.0280 | 0.0884 | 0.0343 | 0.0177 | 0.0001 |
| MindLab Red Lions++ | 0.0280 | 0.0884 | 0.0343 | 0.0180 | 0.0001 |
| MindLab QA Reloaded | 0.0280 | 0.0884 | 0.0343 | 0.0179 | 0.0001 |
| MindLab QA System | 0.0280 | 0.0884 | 0.0343 | 0.0177 | 0.0001 |
| Ir_sys1 | 0.1940 | 0.4932 | 0.2247 | 0.1425 | 0.0068 |
| Ir_sys2 | 0.2260 | 0.5981 | 0.2610 | 0.1521 | 0.0105 |
| Ir_sys3 | 0.2260 | 0.5981 | 0.2610 | 0.1415 | 0.0093 |
| Ir_sys4 | 0.2389 | 0.5862 | 0.2679 | 0.1677 | 0.0124 |
| lalala | 0.2260 | 0.5981 | 0.2610 | 0.1796 | 0.0132 |
| lh_sys1 | 0.2260 | 0.5981 | 0.2610 | 0.1744 | 0.0127 |
| lh_sys2 | 0.2150 | 0.5740 | 0.2483 | 0.1637 | 0.0113 |
| lh_sys3 | 0.2260 | 0.5981 | 0.2610 | 0.1717 | 0.0123 |
| lh_sys4 | 0.2290 | 0.5927 | 0.2613 | 0.1784 | 0.0118 |
| lh_sys5 | 0.2140 | 0.5490 | 0.2426 | 0.1617 | 0.0102 |
Snippets
| System | Mean precision | Recall | F-Measure | MAP | GMAP |
|---|---|---|---|---|---|
| from milab | - | - | - | - | - |
| auth-qa-1 | - | - | - | - | - |
| aueb-nlp-1 | 0.2536 | 0.3785 | 0.2535 | 0.2609 | 0.0100 |
| aueb-nlp-2 | 0.2448 | 0.3763 | 0.2454 | 0.2449 | 0.0110 |
| aueb-nlp-3 | 0.1892 | 0.2723 | 0.1777 | 0.1663 | 0.0062 |
| aueb-nlp-4 | 0.1955 | 0.2652 | 0.1805 | 0.1820 | 0.0066 |
| aueb-nlp-5 | 0.2746 | 0.3414 | 0.2623 | 0.2650 | 0.0099 |
| Deep ML methods for | 0.1743 | 0.2354 | 0.1752 | 0.1750 | 0.0017 |
| MindLab QA System ++ | 0.0468 | 0.0529 | 0.0452 | 0.0390 | 0.0000 |
| MindLab Red Lions++ | 0.0398 | 0.0361 | 0.0346 | 0.0364 | 0.0000 |
| MindLab QA Reloaded | 0.0405 | 0.0362 | 0.0349 | 0.0345 | 0.0000 |
| MindLab QA System | 0.0400 | 0.0486 | 0.0385 | 0.0316 | 0.0000 |
| Ir_sys1 | - | - | - | - | - |
| Ir_sys2 | - | - | - | - | - |
| Ir_sys3 | - | - | - | - | - |
| Ir_sys4 | - | - | - | - | - |
| lalala | - | - | - | - | - |
| lh_sys1 | 0.1269 | 0.1708 | 0.1196 | 0.0894 | 0.0014 |
| lh_sys2 | 0.1276 | 0.1712 | 0.1201 | 0.0826 | 0.0012 |
| lh_sys3 | 0.1269 | 0.1708 | 0.1196 | 0.0935 | 0.0014 |
| lh_sys4 | 0.1269 | 0.1708 | 0.1196 | 0.0768 | 0.0011 |
| lh_sys5 | 0.1276 | 0.1712 | 0.1201 | 0.0933 | 0.0013 |
Concepts
| System | Mean precision | Recall | F-Measure | MAP | GMAP |
|---|---|---|---|---|---|
| from milab | - | - | - | - | - |
| auth-qa-1 | - | - | - | - | - |
| aueb-nlp-1 | - | - | - | - | - |
| aueb-nlp-2 | - | - | - | - | - |
| aueb-nlp-3 | - | - | - | - | - |
| aueb-nlp-4 | - | - | - | - | - |
| aueb-nlp-5 | - | - | - | - | - |
| Deep ML methods for | - | - | - | - | - |
| MindLab QA System ++ | - | - | - | - | - |
| MindLab Red Lions++ | - | - | - | - | - |
| MindLab QA Reloaded | - | - | - | - | - |
| MindLab QA System | - | - | - | - | - |
| Ir_sys1 | - | - | - | - | - |
| Ir_sys2 | - | - | - | - | - |
| Ir_sys3 | - | - | - | - | - |
| Ir_sys4 | - | - | - | - | - |
| lalala | - | - | - | - | - |
| lh_sys1 | - | - | - | - | - |
| lh_sys2 | - | - | - | - | - |
| lh_sys3 | - | - | - | - | - |
| lh_sys4 | - | - | - | - | - |
| lh_sys5 | - | - | - | - | - |
RDF Triples
| System | Mean precision | Recall | F-Measure | MAP | GMAP |
|---|---|---|---|---|---|
| from milab | - | - | - | - | - |
| auth-qa-1 | - | - | - | - | - |
| aueb-nlp-1 | - | - | - | - | - |
| aueb-nlp-2 | - | - | - | - | - |
| aueb-nlp-3 | - | - | - | - | - |
| aueb-nlp-4 | - | - | - | - | - |
| aueb-nlp-5 | - | - | - | - | - |
| Deep ML methods for | - | - | - | - | - |
| MindLab QA System ++ | - | - | - | - | - |
| MindLab Red Lions++ | - | - | - | - | - |
| MindLab QA Reloaded | - | - | - | - | - |
| MindLab QA System | - | - | - | - | - |
| Ir_sys1 | - | - | - | - | - |
| Ir_sys2 | - | - | - | - | - |
| Ir_sys3 | - | - | - | - | - |
| Ir_sys4 | - | - | - | - | - |
| lalala | - | - | - | - | - |
| lh_sys1 | - | - | - | - | - |
| lh_sys2 | - | - | - | - | - |
| lh_sys3 | - | - | - | - | - |
| lh_sys4 | - | - | - | - | - |
| lh_sys5 | - | - | - | - | - |
Test batch 3
Documents
| System | Mean precision | Recall | F-Measure | MAP | GMAP |
|---|---|---|---|---|---|
| auth-qa-1 | 0.2940 | 0.3025 | 0.2522 | 0.1151 | 0.0025 |
| aueb-nlp-1 | 0.3420 | 0.6452 | 0.3730 | 0.2761 | 0.0663 |
| aueb-nlp-2 | 0.3610 | 0.6842 | 0.3952 | 0.2898 | 0.0841 |
| aueb-nlp-3 | 0.3310 | 0.6472 | 0.3658 | 0.2566 | 0.0657 |
| aueb-nlp-4 | 0.3460 | 0.6797 | 0.3820 | 0.2839 | 0.0862 |
| aueb-nlp-5 | 0.5476 | 0.6465 | 0.5289 | 0.2679 | 0.0740 |
| Deep ML methods for | 0.2770 | 0.5658 | 0.3054 | 0.2272 | 0.0359 |
| MindLab QA System ++ | 0.2770 | 0.5658 | 0.3054 | 0.2272 | 0.0359 |
| MindLab QA System | 0.2870 | 0.5778 | 0.3159 | 0.2392 | 0.0348 |
| MindLab Red Lions++ | 0.2870 | 0.5778 | 0.3159 | 0.2392 | 0.0348 |
| MindLab QA Reloaded | 0.2840 | 0.5709 | 0.3119 | 0.2323 | 0.0332 |
| lh_sys1 | 0.2730 | 0.5634 | 0.3077 | 0.2032 | 0.0293 |
| Ir_sys1 | 0.2670 | 0.5507 | 0.3021 | 0.1977 | 0.0313 |
| Ir_sys2 | 0.2730 | 0.5634 | 0.3077 | 0.1952 | 0.0282 |
| lh_sys3 | 0.2690 | 0.5562 | 0.3030 | 0.2001 | 0.0249 |
| Ir_sys3 | 0.2470 | 0.4513 | 0.2701 | 0.1503 | 0.0093 |
| lh_sys4 | 0.2760 | 0.5738 | 0.3122 | 0.2142 | 0.0319 |
| lalala | 0.2210 | 0.5025 | 0.2570 | 0.1515 | 0.0134 |
| lh_sys5 | 0.2730 | 0.5634 | 0.3077 | 0.2094 | 0.0309 |
| lh_sys2 | 0.2730 | 0.5634 | 0.3077 | 0.2021 | 0.0298 |
Snippets
| System | Mean precision | Recall | F-Measure | MAP | GMAP |
|---|---|---|---|---|---|
| auth-qa-1 | - | - | - | - | - |
| aueb-nlp-1 | 0.3636 | 0.3755 | 0.3219 | 0.3657 | 0.0454 |
| aueb-nlp-2 | 0.3933 | 0.4120 | 0.3522 | 0.3864 | 0.0777 |
| aueb-nlp-3 | 0.2715 | 0.2661 | 0.2373 | 0.2349 | 0.0266 |
| aueb-nlp-4 | 0.2853 | 0.2735 | 0.2454 | 0.2609 | 0.0335 |
| aueb-nlp-5 | 0.3678 | 0.3609 | 0.3277 | 0.3481 | 0.0533 |
| Deep ML methods for | 0.2049 | 0.2596 | 0.2052 | 0.1955 | 0.0083 |
| MindLab QA System ++ | 0.1835 | 0.2141 | 0.1732 | 0.1538 | 0.0080 |
| MindLab QA System | 0.1874 | 0.1980 | 0.1675 | 0.1690 | 0.0057 |
| MindLab Red Lions++ | 0.2072 | 0.2178 | 0.1804 | 0.1820 | 0.0135 |
| MindLab QA Reloaded | 0.2202 | 0.2541 | 0.2046 | 0.2330 | 0.0061 |
| lh_sys1 | 0.1360 | 0.1320 | 0.1142 | 0.1234 | 0.0017 |
| Ir_sys1 | - | - | - | - | - |
| Ir_sys2 | 0.1360 | 0.1320 | 0.1142 | 0.1234 | 0.0017 |
| lh_sys3 | 0.1360 | 0.1320 | 0.1142 | 0.0825 | 0.0012 |
| Ir_sys3 | - | - | - | - | - |
| lh_sys4 | - | - | - | - | - |
| lalala | - | - | - | - | - |
| lh_sys5 | - | - | - | - | - |
| lh_sys2 | 0.1360 | 0.1320 | 0.1142 | 0.1234 | 0.0017 |
Concepts
| System | Mean precision | Recall | F-Measure | MAP | GMAP |
|---|---|---|---|---|---|
| auth-qa-1 | - | - | - | - | - |
| aueb-nlp-1 | - | - | - | - | - |
| aueb-nlp-2 | - | - | - | - | - |
| aueb-nlp-3 | - | - | - | - | - |
| aueb-nlp-4 | - | - | - | - | - |
| aueb-nlp-5 | - | - | - | - | - |
| Deep ML methods for | - | - | - | - | - |
| MindLab QA System ++ | - | - | - | - | - |
| MindLab QA System | - | - | - | - | - |
| MindLab Red Lions++ | - | - | - | - | - |
| MindLab QA Reloaded | - | - | - | - | - |
| lh_sys1 | - | - | - | - | - |
| Ir_sys1 | - | - | - | - | - |
| Ir_sys2 | - | - | - | - | - |
| lh_sys3 | - | - | - | - | - |
| Ir_sys3 | - | - | - | - | - |
| lh_sys4 | - | - | - | - | - |
| lalala | - | - | - | - | - |
| lh_sys5 | - | - | - | - | - |
| lh_sys2 | - | - | - | - | - |
RDF Triples
| System | Mean precision | Recall | F-Measure | MAP | GMAP |
|---|---|---|---|---|---|
| auth-qa-1 | - | - | - | - | - |
| aueb-nlp-1 | - | - | - | - | - |
| aueb-nlp-2 | - | - | - | - | - |
| aueb-nlp-3 | - | - | - | - | - |
| aueb-nlp-4 | - | - | - | - | - |
| aueb-nlp-5 | - | - | - | - | - |
| Deep ML methods for | - | - | - | - | - |
| MindLab QA System ++ | - | - | - | - | - |
| MindLab QA System | - | - | - | - | - |
| MindLab Red Lions++ | - | - | - | - | - |
| MindLab QA Reloaded | - | - | - | - | - |
| lh_sys1 | - | - | - | - | - |
| Ir_sys1 | - | - | - | - | - |
| Ir_sys2 | - | - | - | - | - |
| lh_sys3 | - | - | - | - | - |
| Ir_sys3 | - | - | - | - | - |
| lh_sys4 | - | - | - | - | - |
| lalala | - | - | - | - | - |
| lh_sys5 | - | - | - | - | - |
| lh_sys2 | - | - | - | - | - |
Test batch 4
Documents
| System | Mean precision | Recall | F-Measure | MAP | GMAP |
|---|---|---|---|---|---|
| auth-qa-1 | 0.1910 | 0.2842 | 0.1908 | 0.0651 | 0.0008 |
| aueb-nlp-1 | 0.2541 | 0.6668 | 0.2998 | 0.2102 | 0.0316 |
| aueb-nlp-2 | 0.2531 | 0.6523 | 0.2992 | 0.2092 | 0.0279 |
| aueb-nlp-3 | 0.2401 | 0.6451 | 0.2857 | 0.1962 | 0.0282 |
| aueb-nlp-4 | 0.2481 | 0.6445 | 0.2948 | 0.2080 | 0.0268 |
| aueb-nlp-5 | 0.4537 | 0.6416 | 0.4580 | 0.1968 | 0.0291 |
| Deep ML methods for | 0.1980 | 0.5399 | 0.2350 | 0.1646 | 0.0101 |
| MindLab QA Reloaded | 0.2080 | 0.5664 | 0.2463 | 0.1724 | 0.0121 |
| MindLab QA System ++ | 0.2080 | 0.5664 | 0.2463 | 0.1724 | 0.0121 |
| MindLab QA System | 0.2080 | 0.5664 | 0.2463 | 0.1724 | 0.0121 |
| MindLab Red Lions++ | 0.2080 | 0.5664 | 0.2463 | 0.1724 | 0.0121 |
| lh_sys2 | 0.2120 | 0.5922 | 0.2558 | 0.1594 | 0.0142 |
| lh_sys1 | 0.2140 | 0.5856 | 0.2564 | 0.1673 | 0.0141 |
| lh_sys3 | 0.2040 | 0.5714 | 0.2470 | 0.1569 | 0.0117 |
| lh_sys4 | 0.2230 | 0.6121 | 0.2695 | 0.1752 | 0.0186 |
| lh_sys5 | 0.2160 | 0.5901 | 0.2591 | 0.1691 | 0.0154 |
Snippets
| System | Mean precision | Recall | F-Measure | MAP | GMAP |
|---|---|---|---|---|---|
| auth-qa-1 | - | - | - | - | - |
| aueb-nlp-1 | 0.3209 | 0.4321 | 0.3018 | 0.3249 | 0.0281 |
| aueb-nlp-2 | 0.3254 | 0.4308 | 0.3048 | 0.3409 | 0.0344 |
| aueb-nlp-3 | 0.2563 | 0.3581 | 0.2346 | 0.2213 | 0.0196 |
| aueb-nlp-4 | 0.2550 | 0.3325 | 0.2318 | 0.2173 | 0.0178 |
| aueb-nlp-5 | 0.3256 | 0.4403 | 0.3010 | 0.2976 | 0.0379 |
| Deep ML methods for | 0.1945 | 0.2836 | 0.1961 | 0.1889 | 0.0039 |
| MindLab QA Reloaded | 0.2276 | 0.2857 | 0.2093 | 0.2214 | 0.0052 |
| MindLab QA System ++ | 0.2112 | 0.2317 | 0.1819 | 0.1931 | 0.0058 |
| MindLab QA System | 0.1998 | 0.2669 | 0.1865 | 0.1892 | 0.0064 |
| MindLab Red Lions++ | 0.2168 | 0.2718 | 0.1982 | 0.2000 | 0.0067 |
| lh_sys2 | 0.0793 | 0.0708 | 0.0649 | 0.0360 | 0.0002 |
| lh_sys1 | 0.1202 | 0.1323 | 0.1057 | 0.0748 | 0.0012 |
| lh_sys3 | 0.1150 | 0.1069 | 0.0966 | 0.0850 | 0.0011 |
| lh_sys4 | 0.1150 | 0.1069 | 0.0966 | 0.0874 | 0.0011 |
| lh_sys5 | 0.1150 | 0.1069 | 0.0966 | 0.0850 | 0.0011 |
Concepts
| System | Mean precision | Recall | F-Measure | MAP | GMAP |
|---|---|---|---|---|---|
| auth-qa-1 | - | - | - | - | - |
| aueb-nlp-1 | - | - | - | - | - |
| aueb-nlp-2 | - | - | - | - | - |
| aueb-nlp-3 | - | - | - | - | - |
| aueb-nlp-4 | - | - | - | - | - |
| aueb-nlp-5 | - | - | - | - | - |
| Deep ML methods for | - | - | - | - | - |
| MindLab QA Reloaded | - | - | - | - | - |
| MindLab QA System ++ | - | - | - | - | - |
| MindLab QA System | - | - | - | - | - |
| MindLab Red Lions++ | - | - | - | - | - |
| lh_sys2 | - | - | - | - | - |
| lh_sys1 | - | - | - | - | - |
| lh_sys3 | - | - | - | - | - |
| lh_sys4 | - | - | - | - | - |
| lh_sys5 | - | - | - | - | - |
RDF Triples
| System | Mean precision | Recall | F-Measure | MAP | GMAP |
|---|---|---|---|---|---|
| auth-qa-1 | - | - | - | - | - |
| aueb-nlp-1 | - | - | - | - | - |
| aueb-nlp-2 | - | - | - | - | - |
| aueb-nlp-3 | - | - | - | - | - |
| aueb-nlp-4 | - | - | - | - | - |
| aueb-nlp-5 | - | - | - | - | - |
| Deep ML methods for | - | - | - | - | - |
| MindLab QA Reloaded | - | - | - | - | - |
| MindLab QA System ++ | - | - | - | - | - |
| MindLab QA System | - | - | - | - | - |
| MindLab Red Lions++ | - | - | - | - | - |
| lh_sys2 | - | - | - | - | - |
| lh_sys1 | - | - | - | - | - |
| lh_sys3 | - | - | - | - | - |
| lh_sys4 | - | - | - | - | - |
| lh_sys5 | - | - | - | - | - |
Test batch 5
Documents
| System | Mean precision | Recall | F-Measure | MAP | GMAP |
|---|---|---|---|---|---|
| auth-qa-1 | 0.0990 | 0.1748 | 0.1053 | 0.0248 | 0.0001 |
| aueb-nlp-1 | 0.1510 | 0.4346 | 0.1799 | 0.1049 | 0.0037 |
| aueb-nlp-2 | 0.1570 | 0.4221 | 0.1802 | 0.1218 | 0.0036 |
| aueb-nlp-3 | 0.1440 | 0.4406 | 0.1757 | 0.0968 | 0.0042 |
| aueb-nlp-4 | 0.1580 | 0.4632 | 0.1905 | 0.1080 | 0.0052 |
| aueb-nlp-5 | 0.2708 | 0.4196 | 0.2712 | 0.1004 | 0.0038 |
| MindLab QA System ++ | 0.1220 | 0.4007 | 0.1488 | 0.0800 | 0.0026 |
| MindLab Red Lions++ | 0.1220 | 0.4007 | 0.1488 | 0.0800 | 0.0026 |
| MindLab QA System | 0.1220 | 0.4007 | 0.1488 | 0.0800 | 0.0026 |
| MindLab QA Reloaded | 0.1220 | 0.4007 | 0.1488 | 0.0800 | 0.0026 |
| Deep ML methods for | 0.1240 | 0.4004 | 0.1497 | 0.0823 | 0.0026 |
| auth-qa-2 | 0.0170 | 0.0478 | 0.0188 | 0.0064 | 0.0000 |
| lh_sys1 | 0.1280 | 0.4235 | 0.1570 | 0.0829 | 0.0028 |
| lh_sys2 | 0.1180 | 0.3849 | 0.1461 | 0.0779 | 0.0020 |
| lh_sys3 | 0.1210 | 0.4181 | 0.1501 | 0.0808 | 0.0027 |
| lh_sys4 | 0.1310 | 0.4311 | 0.1612 | 0.0850 | 0.0028 |
| lh_sys5 | 0.1350 | 0.4432 | 0.1653 | 0.0884 | 0.0033 |
Snippets
| System | Mean precision | Recall | F-Measure | MAP | GMAP |
|---|---|---|---|---|---|
| auth-qa-1 | - | - | - | - | - |
| aueb-nlp-1 | 0.1168 | 0.2681 | 0.1312 | 0.1146 | 0.0010 |
| aueb-nlp-2 | 0.1459 | 0.3019 | 0.1575 | 0.1383 | 0.0018 |
| aueb-nlp-3 | 0.1033 | 0.2361 | 0.1126 | 0.0859 | 0.0010 |
| aueb-nlp-4 | 0.1118 | 0.2600 | 0.1222 | 0.0948 | 0.0013 |
| aueb-nlp-5 | 0.1391 | 0.2830 | 0.1520 | 0.1194 | 0.0016 |
| MindLab QA System ++ | 0.0720 | 0.1923 | 0.0874 | 0.0781 | 0.0004 |
| MindLab Red Lions++ | 0.0701 | 0.1970 | 0.0854 | 0.0578 | 0.0005 |
| MindLab QA System | 0.0737 | 0.2129 | 0.0885 | 0.0670 | 0.0005 |
| MindLab QA Reloaded | 0.0720 | 0.1923 | 0.0874 | 0.0781 | 0.0004 |
| Deep ML methods for | 0.0756 | 0.2440 | 0.0946 | 0.0537 | 0.0008 |
| auth-qa-2 | - | - | - | - | - |
| lh_sys1 | 0.0486 | 0.0743 | 0.0474 | 0.0449 | 0.0001 |
| lh_sys2 | - | - | - | - | - |
| lh_sys3 | - | - | - | - | - |
| lh_sys4 | - | - | - | - | - |
| lh_sys5 | - | - | - | - | - |
Concepts
| System | Mean precision | Recall | F-Measure | MAP | GMAP |
|---|---|---|---|---|---|
| auth-qa-1 | - | - | - | - | - |
| aueb-nlp-1 | - | - | - | - | - |
| aueb-nlp-2 | - | - | - | - | - |
| aueb-nlp-3 | - | - | - | - | - |
| aueb-nlp-4 | - | - | - | - | - |
| aueb-nlp-5 | - | - | - | - | - |
| MindLab QA System ++ | - | - | - | - | - |
| MindLab Red Lions++ | - | - | - | - | - |
| MindLab QA System | - | - | - | - | - |
| MindLab QA Reloaded | - | - | - | - | - |
| Deep ML methods for | - | - | - | - | - |
| auth-qa-2 | - | - | - | - | - |
| lh_sys1 | - | - | - | - | - |
| lh_sys2 | - | - | - | - | - |
| lh_sys3 | - | - | - | - | - |
| lh_sys4 | - | - | - | - | - |
| lh_sys5 | - | - | - | - | - |
RDF Triples
| System | Mean precision | Recall | F-Measure | MAP | GMAP |
|---|---|---|---|---|---|
| auth-qa-1 | - | - | - | - | - |
| aueb-nlp-1 | - | - | - | - | - |
| aueb-nlp-2 | - | - | - | - | - |
| aueb-nlp-3 | - | - | - | - | - |
| aueb-nlp-4 | - | - | - | - | - |
| aueb-nlp-5 | - | - | - | - | - |
| MindLab QA System ++ | - | - | - | - | - |
| MindLab Red Lions++ | - | - | - | - | - |
| MindLab QA System | - | - | - | - | - |
| MindLab QA Reloaded | - | - | - | - | - |
| Deep ML methods for | - | - | - | - | - |
| auth-qa-2 | - | - | - | - | - |
| lh_sys1 | - | - | - | - | - |
| lh_sys2 | - | - | - | - | - |
| lh_sys3 | - | - | - | - | - |
| lh_sys4 | - | - | - | - | - |
| lh_sys5 | - | - | - | - | - |